AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage.

نویسندگان

  • Yang Li
  • Mengxue Yang
  • Zhuo Huang
  • Xiaoping Chen
  • Michael T Maloney
  • Li Zhu
  • Jianghong Liu
  • Yanmin Yang
  • Sidan Du
  • Xingyu Jiang
  • Jane Y Wu
چکیده

Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an 'axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Microchip for High-Throughput Axon Growth Drug Screening

It has been recently known that not only the presence of inhibitory molecules associated with myelin but also the reduced growth capability of the axons limit mature central nervous system (CNS) axonal regeneration after injury. Conventional axon growth studies are typically conducted using multi-well cell culture plates that are very challenging to investigate localized effects of drugs and li...

متن کامل

Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration

We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...

متن کامل

Fluid Flow Shear Stress Stimulation on a Multiplex Microfluidic Device for Rat Bone Marrow Stromal Cell Differentiation Enhancement

Microfluidic devices provide low sample consumption, high throughput, high integration, and good environment controllability advantages. An alternative to conventional bioreactors, microfluidic devices are a simple and effective platform for stem cell investigations. In this study, we describe the design of a microfluidic device as a chemical and mechanical shear stress bioreactor to stimulate ...

متن کامل

Microfluidic Platform for the Simultaneous Generation of Four Independent Gradients: towards the High Throughput Screening of Trace Elements for Bone Tissue Engineering

We propose a microfluidics-based cell-culture platform for the screening of trace elements in bone tissue engineering. With this platform, it is possible to create four stable, independent and perpendicular diffusion-based concentration gradients in a single square chamber, in which cells are cultured. This allows examining the combined effect of four compounds in a single assay.

متن کامل

Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform.

Quantitative characterization of a single-cell phenotype remains challenging. We combined a scalable microfluidic array of parallel cell culture chambers and stimulated Raman scattering (SRS) microscopy to quantitatively characterize the response of lipid droplet (LD) formation to free-fatty-acid stimuli with single-LD resolution at the single-cell level. By enabling the systematic live-cell im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuro-Signals

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2014